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Abstract. Quantitative extensions of parity games have recently attracted significant interest.
These extensions include parity games with energy and payoff conditions as well as finitary parity
games and their generalization to parity games with costs. Finitary parity games enjoy a special
status among these extensions, as they offer a native combination of the qualitative and quantitative
aspects in infinite games: the quantitative aspect of finitary parity games is a quality measure for
the qualitative aspect, as it measures the limit superior of the time it takes to answer an odd color
by a larger even one. Finitary parity games have been extended to parity games with costs, where
each transition is labelled with a non-negative weight that reflects the costs incurred by taking it.
We lift this restriction and consider parity games with costs with arbitrary integer weights. We show
that solving such games is in NP∩co-NP, the signature complexity for games of this type. We also
show that the protagonist has finite-state winning strategies, and provide tight exponential bounds
for the memory he needs to win the game. Naturally, the antagonist may need need infinite memory
to win. Finally, we present tight bounds on the quality of winning strategies for the protagonist.

1 Introduction

Finite games of infinite duration offer a wealth of challenges and applications that has garnered to a lot
of attention. The traditional class of games under consideration were games with a simple parity [18, 11,
10, 21, 2, 29, 14, 15, 27, 17, 24, 26, 25, 3, 16, 12, 19] or payoff [23, 30, 14, 1, 26] objective. These games form a
hierarchy with very simple tractable reductions from parity games through mean payoff games [23, 30,
14, 1, 26] and discounted payoff games [30, 14, 26] to simple stochastic games [9].

More recently, games with a mixture of the qualitative parity condition and further quantitative
objectives have been considered, including mean payoff parity games [8] and energy parity games [4].
Finitary parity games [7] take a special role within the class of games with mixed parity and payoff
objectives. To win a finitary parity game, Player 0 needs to enforce a play with a bound b such that
almost all occurrences of an odd color are followed by a higher even color within at most b steps.

This is interesting, because it provides a natural link between the qualitative and quantitative ob-
jective. One aspect that attracted attention is that, as long as one is not interested in optimizing the
bound b, these games are the only games of the lot that are known to be tractable [7]. However, the
bound b itself is also interesting: It serves as a native quality measure, because it limits the response
time [28].

This property calls for a generalization to different cost models, and a first generalization has been
made with the introduction of parity games with costs [13]. In parity games with costs, the basic cost
function of finitary parity games—where each step incurs the same cost—is replaced with different non-
negative costs for different edges. In this paper, we generalize this further to general integer costs: We
decorate the edges with integer weights. The quantitative aspect in these parity games with weights
consists of having to answer almost all odd colors by a higher even color, such that the absolute value of
the weight of the path to this even color is bounded by a bound b.

In addition to their conceptual charm, we show that parity games with weights are PTime equivalent
to energy parity games. This indicates that these games are part of a natural complexity class, whereas
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the games with a plain objective appear to form a hierarchy. We use the reduction from parity games
with weights to energy parity games to solve them. This reduction goes through intermediate reductions
to and from bounded parity games with weights. These games have the additional restriction that the
limes superior of the absolute weight of initial sequences of unanswered requests in a play is finite. These
bounded parity games with weights are then reduced to energy parity games. The other direction of the
reduction is through simple gadgets that preserve the main elements of winning strategies in games that
are extended in two steps by very simple gadgets. As a result, we obtain the same complexity results for
parity games with weights as for energy parity games, i.e.,NP∩co-NP, the signature complexity for finite
games of infinite duration with parity conditions and their extensions. Thereby, we obtain an argument
that these games might be representatives of a natural complexity class, lending a further argument for
the relevance of two player games with mixed qualitative and quantitative winning conditions.

Naturally, parity games with weights subsume parity games (as a special case where all weights are
zero), finitary parity games (as a special case where all weights are positive), and parity games with costs
(as a special case where all weights are non-negative).

Finally, we show that the protagonist has finite-state winning strategies, and provide tight exponential
bounds for the memory he needs to win the game. We also present tight bounds on the quality of winning
strategies for the protagonist. Naturally, the antagonist may need infinite memory to win.

2 Preliminaries

We denote the non-negative integers by N, the integers by Z, and define N∞ = N ∪ {∞}. As usual, we
have ∞ > n, −∞ < n, n+∞ = ∞, and −∞− n = −∞ for all n ∈ Z.

An arena A = (V, V0, V1, E) consists of a finite, directed graph (V,E) and a partition {V0, V1} of V
into the positions of Player 0 (drawn as ellipses) and Player 1 (drawn as rectangles). The size of A,
denoted by |A|, is defined as |V |. A play in A is an infinite path ρ = v0v1v2 · · · through (V,E). To rule
out finite plays, we require every vertex to be non-terminal. We define |ρ| = ∞.

A game G = (A,Win) consists of an arena A with vertex set V and a set Win ⊆ V ω of winning plays
for Player 0. The set of winning plays for Player 1 is V ω \Win. A winning condition Win is 0-extendable
if, for all ρ ∈ V ω and all w ∈ V ∗, ρ ∈ Win implies wρ ∈ Win. Dually, Win is 1-extendable if, for all
ρ ∈ V ω and all w ∈ V ∗, ρ /∈ Win implies wρ /∈ Win.

A strategy for Player i ∈ {0, 1} is a mapping σ : V ∗Vi → V such that (v,σ(wv)) ∈ E holds true for
all wv ∈ V ∗Vi. We say that σ is positional if σ(wv) = σ(v) holds true for every wv ∈ V ∗Vi. A play
v0v1v2 · · · is consistent with a strategy σ for Player i, if vj+1 = σ(v0 · · · vj) holds true for every j with
vj ∈ Vi. A strategy σ for Player i is a winning strategy for G from v ∈ V if every play that starts in v
and is consistent with σ is won by Player i. If Player i has a winning strategy from v, then we say Player i
wins G from v. The winning region of Player i is the set of vertices, from which Player i wins G; it is
denoted by Wi(G). Solving a game amounts to determining its winning regions. If W0(G)∪W1(G) = V ,
then we say that G is determined.

Let A = (V, V0, V1, E) be an arena and let X ⊆ V . The i-attractor of X is defined inductively as

Attri(X) = Attr
|V |
i (X), where Attr0i (X) = X and

Attrji (X) = Attrj−1
i (X) ∪ {v ∈ Vi | ∃v′ ∈ Attrj−1

i (X). (v, v′) ∈ E}
∪ {v ∈ V1−i | ∀(v, v′) ∈ E. v′ ∈ Attrj−1

i (X)} .

Hence, Attri(X) is the set of vertices from which Player i can force the play to enter X: Player i has a
positional strategy σX such that each play that starts in some vertex in Attri(X) and is consistent with σX

eventually encounters some vertex from X. We call σX an attractor strategy towards X. Moreover, the i-
attractor can be computed in time linear in |E| [22]. When we want to stress the arena A the attractor
is computed in, we write AttrAi (X).

A set X ⊆ V is a trap for Player i, if every vertex in X ∩ Vi has only successors in X and every
vertex in X ∩V1−i has at least one successor in X. In this case, Player 1− i has a positional strategy τX
such that every play starting in some vertex in X and consistent with τX never leaves X. We call such
a strategy a trap strategy.
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Remark 1.

1. The complement of an i-attractor is a trap for Player i.
2. If X is a trap for Player i, then Attr1−i(X) is also a trap for Player i.
3. If Win is i-extendable and (A,Win) determined, then W1−i(A,Win) is a trap for Player i.

A memory structure M = (M, init, upd) for an arena (V, V0, V1, E) consists of a finite set M of
memory states, an initialization function init : V → M , and an update function upd: M × E → M .
The update function can be extended to finite play prefixes in the usual way: upd+(v) = init(v) and
upd+(wvv′) = upd(upd+(wv), (v, v′)) for w ∈ V ∗ and (v, v′) ∈ E. A next-move function Nxt: Vi×M →
V for Player i has to satisfy (v,Nxt(v,m)) ∈ E for all v ∈ Vi and m ∈ M . It induces a strategy σ for
Player i with memory M via σ(v0 · · · vj) = Nxt(vj , upd

+(v0 · · · vj)). A strategy is called finite-state if
it can be implemented by a memory structure. We define |M| = |M |. Slightly abusively, we say that the
size of a finite-state strategy is the size of a memory structure implementing it.

3 Parity Games with Weights

Fix an arena A = (V, V0, V1, E). A weighting for A is a function w : E → Z. We define w(ε) = w(v) = 0
for all v ∈ V and extend w to sequences of vertices of length at least two by summing up the weights
of the traversed edges. Given a play (prefix) π = v0v1v2 · · · , we define the amplitude of π as Ampl(π) =
supj<|π| |w(v0 · · · vj)| ∈ N∞.

A coloring of V is a function Ω : V → N. The classical parity condition requires almost all occurrences
of odd colors to be answered by a later occurrence of a larger even color. Hence, let Ans(c) = {c′ ∈ N |
c′ ≥ c and c′ is even} be the set of colors that “answer” a “request” for color c. We denote a vertex v of
color c by v/c.

Fijalkow and Zimmermann introduced a generalization of the parity condition and the finitary parity
condition [7], the parity condition with costs [13]. There, the edges of the arena are labeled with non-
negative weights and the winning condition demands that there exists a bound b such that almost all
requests are answered with weight at most b, i.e., the weight of the infix between the request and the
response has to be bounded by b.

Our aim is to extend the parity condition with costs by allowing for the full spectrum of weights to
be used, i.e., by also incorporating negative weights. In this setting, the weight of an infix between a
request and a response might be negative. Thus, the extended condition requires the weight of the infix
to be bounded from above and from below.3 To distinguish between the parity condition with costs and
the extension introduced here, we call our extension the parity condition with weights.

Formally, let ρ = v0v1v2 · · · be a play. We define the cost-of-response at position j ∈ N of ρ by

Cor(ρ, j) = min{Ampl(vj · · · vj′) | j′ ≥ j,Ω(vj′) ∈ Ans(Ω(vj))}

where we use min ∅ = ∞. As the amplitude of an infix only increases by extending the infix, Cor(ρ, j) is
the amplitude of the shortest infix that starts at position j and ends at an answer to the request posed
at position j. We illustrate this notion in Figure 1.

Cor(ρ, j)

Cor(ρ, j)

w

vj vj′

Fig. 1. The cost-of-response of some request posed by visiting vertex vj , which is answered by visiting vertex vj′ .

We say that a request at position j is answered with cost b, if Cor(ρ, j) = b. Consequently, a request
with an even color is answered with cost zero. The cost-of-response of an unanswered request is infinite,

3 We discuss other possible interpretations of negative weights in Section 9.
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even if the amplitude of the remaining play is bounded. In particular, this means that an unanswered
request at position j may be “unanswered with finite cost b” (if the amplitude of the remaining play
is b ∈ N) or “unanswered with infinite cost” (if the amplitude of the remaining play is infinite). In either
case, however, we have Cor(ρ, j) = ∞.

We define the parity condition with weights as

WeightParity(Ω, w) = {ρ ∈ V ω | lim supj→∞ Cor(ρ, j) ∈ N} .

I.e., ρ satisfies the condition if and only if there exists a bound b ∈ N such that almost all requests are
answered with cost less than b. In particular, only finitely many requests may be unanswered, even with
finite cost. Note that the bound b may depend on the play ρ.

We call a game G = (A,WeightParity(Ω, w)) a parity game with weights, and we define |G| =
|A|+log(W ), where W is the largest absolute weight assigned by w; i.e., we assume weights to be encoded
in binary. If w assigns zero to every edge, then WeightParity(Ω, w) is a classical (max-) parity condition,
denoted by Parity(Ω). Similarly, if w assigns positive weights to every edge, then WeightParity(Ω, w)
is equal to the finitary parity condition over Ω, as introduced by Chatterjee and Henzinger [6]. Finally,
if w assigns only non-negative weights, then WeightParity(Ω, w) is a parity condition with costs, as
introduced by Fijalkow and Zimmermann [13]. In these cases, we refer to G as a parity game, a finitary
parity game, or a parity game with costs, respectively. We recall the characteristics of these games in
Table 1.

4 Solving Parity Games with Weights

We now show how to solve parity games with weights. Our approach is inspired by the classic work
on finitary parity games [7] and parity games with costs [13]: We first define a stricter variant of these
games, which we call bounded parity games with weights, and then show two reductions:

– parity games with weights can be solved in polynomial time with oracles that solve bounded parity
games with weights (in this section); and

– bounded parity games with weights can be solved in polynomial time with oracles that solve energy
parity games (Section 5).

Furthermore, in Section 8 we polynomially reduce solving energy parity games to solving parity games
with weights and thereby show that parity games with weights, bounded parity games with weights, and
energy parity games belong to the same complexity class.

The energy parity games that we reduce to are known to be efficiently solvable [4]: they are in
NP ∩ co-NP and can be solved in pseudo-polynomial time for a fixed number of colors.

We first introduce the bounded parity condition with weights, which is a strengthening of the
parity condition with weights. Hence, it is also induced by a coloring and a weighting:

BndWeightParity(Ω, w) = WeightParity(Ω, w)

∩ {ρ ∈ V ω | no request in ρ is unanswered with infinite cost} .

Note that this condition allows for a finite number of unanswered requests, as long as they are unanswered
with finite cost.

We solve parity games with weights by repeatedly solving bounded parity games with weights. To this
end, we apply the following two properties of the winning conditions: We have BndWeightParity(Ω, w) ⊆
WeightParity(Ω, w) as well as that WeightParity(Ω, w) is 0-extendable. Hence, if Player 0 has a strategy
from a vertex v such that every consistent play has a suffix in BndWeightParity(Ω, w), then the strategy
is winning for her from v w.r.t. WeightParity(Ω, w). Thus, Attr0(W0(A,BndWeightParity(Ωw))) ⊆
W0(A,WeightParity(Ω, w)). The algorithm that solves parity games with weights repeatedly removes
attractors of winning regions of the bounded parity game with weights until a fixed point is reached. We
will later formalize this sketch to show that the removed parts are a subset of Player 0’s winning region
in the parity game with weights.

To show that the obtained fixed point covers the complete winning region of Player 0, we use the
following lemma to show that the remaining vertices are a subset of Player 1’s winning region in the
parity game with weights. The proof is very similar to the corresponding one for finitary parity games
and parity games with costs.
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Lemma 1. Let G = (A,WeightParity(Ω, w)) and let G′ = (A,BndWeightParity(Ω, w)). If W0(G′) = ∅,
then W0(G) = ∅.

Proof. As bounded parity conditions with weights are Borel, bounded parity games with weights are
determined [20]. Hence, W0(G′) = ∅ implies that, for every vertex v of A, Player 1 has a strategy τv that
is winning in G′ from v.

We combine these strategies into a single strategy τ for Player 1 that is winning in G from every
vertex of A. This strategy is controlled by a vertex v∗ (initialized with the starting vertex of the play)
and a counter κ ranging over N (initialized with zero). The strategy τ mimics the strategy τv∗ from v∗

until a request is followed by an infix without an answer and with amplitude κ. This implies that the
cost-of-response of this request is at least κ. If such a situation is encountered, then v∗ is set to the
current vertex and κ is incremented. Furthermore, the history of the play is discarded at this point in
the play, and τ behaves henceforth like τv∗ when starting at v∗ when this happens.

Consider a play ρ that is consistent with this strategy. If, on the one hand, κ is updated infinitely
often along ρ, then ρ contains, for every b ∈ N, a request that has a cost-of-response that is larger than b.
Hence, it violates the parity condition with weights.

If, on the other hand, κ is only updated finitely often, then ρ has a suffix ρ′ that starts in some v,
which is consistent with τv. As τv is winning for Player 1 from v in G′, ρ′ violates the bounded parity
condition with weights. Also, because κ is updated only finitely often during the suffix, there is a bound b
such that the amplitude of every suffix of ρ′ that starts at a request is bounded by b. Hence, the only
way for ρ′ to violate the bounded parity condition with weights is to violate the parity condition. Thus,
the full play ρ also violates the parity condition, and therefore also the parity condition with weights,
which is a strengthening of the parity condition. Therefore, τ is indeed winning for Player 1 from every
vertex in G. ⊓⊔

Lemma 1 implies that the algorithm for solving parity games with weights by repeatedly solving
bounded parity games with weights (see Algorithm 1) is correct. Note that we use an oracle for solving
bounded parity games with weights. We provide a suitable algorithm in Section 5.

Algorithm 1 A fixed-point algorithm computing W0(A,WeightParity(Ω, w)).

k = 0; W k
0 = ∅; Ak = A

repeat
k = k + 1
Xk = W0(Ak−1,BndWeightParity(Ω, w))

W k
0 = W k−1

0 ∪Attr
Ak−1
0 (Xk)

Ak = Ak−1 \Attr
Ak−1
0 (Xk)

until Xk = ∅
return W k

0

The loop terminates after at most |A| iterations (assuming the algorithm solving bounded parity
games with weights terminates), as during each iteration at least one vertex is removed from the arena.
The correctness proof relies on Lemma 1 and is similar to the one for finitary parity games [7] and for
parity games with costs [13].

Lemma 2. Algorithm 1 returns W0(A,WeightParity(Ω, w))

Proof. Let G = (A,WeightParity(Ω, w)) and let k∗ be the final iteration when running the algorithm

on G, i.e., its output is W k∗

0 =
󰁖

0<k′<k Attr
Ak′−1

0 (Xk′).

First, we consider Player 0 and show W k∗

0 ⊆ W0(G). For every vertex v that is in some Xk, Player 0
has a strategy σv for Gk = (Ak−1,BndWeightParity(Ω, w))) that is winning from v. Furthermore, for

every attractor Attr
Ak−1

0 (Xk) he has a positional attractor strategy σk. Now, we compose these strategies
to a strategy σ for Player 0 in A via

σ(v0 · · · vj) =
󰀫
σk(vj) if vj ∈ Attr

Ak−1

0 (Xk) \Xk,

σvj′ (vj′ · · · vj) if vj ∈ Xk.
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In the second case, vj′ · · · vj is the longest suffix of v0 · · · vj that only contains vertices from Xk, the set
of vertices from which Player 0 has a winning strategy for Gk.

Consider a play ρ = v0v1v2 · · · in A that starts in W k∗

0 and is consistent with σ. For every j there

is a unique kj in the range 0 < kj < k∗ such that vj ∈ Attr
Akj−1

0 (Xkj ). As BndWeightParity(Ω, w) is

1-extendable, Items 2 and 3 of Remark 1 imply that each Attr
Ak−1

0 (Xk) is a trap for Player 1 in Ak−1.
Hence, we obtain k0 > k1 > k2 > · · · . As the kj are always greater than zero, the sequence has to
stabilize eventually. This implies that ρ has a suffix ρ′ = vjvj+1vj+2 · · · that is consistent with σvj

.

Hence, due to σvj being a winning strategy for Player 0 in Gk from vj , we obtain ρ′ ∈ BndWeightParity(Ω, w).
Hence, ρ ∈ WeightParity(Ω, w) due to 0-extendability of WeightParity(Ω, w). Hence, σ is indeed winning
from W k∗

0 .

Now, consider Player 1. We show V \W k∗

0 ⊆ W1(G). Then, determinacy of parity games with weights
(due to their winning conditions being Borel [20]) yields W k∗

0 = W0(G) and V \W k∗

0 = W1(G).
Due to Xk∗ being empty and bounded parity games with weights being determined (again due to their

winning conditions being Borel), Player 1 wins the bounded parity game with weights Gk∗ from every ver-
tex. Applying Lemma 1 shows that she also wins the parity game with weights (Ak∗−1,WeightParity(Ω, w))
from every vertex. Finally, as V \W k∗

0 = W1(Ak∗−1,WeightParity(Ω, w)) is a trap for Player 0 in A by
construction, he also wins G = (A,WeightParity(Ω, w)) from every vertex in V \W k∗

0 . ⊓⊔

The strategy σ defined in the proof of the first item can be implemented by a finite-state strategy of
size maxk≤k∗ sk, assuming that the constituent strategies σk are finite-state strategies of size sk. To this
end, one uses the fact that the winning regions Xk are disjoint and are never revisited once left. Hence,
we can assume the implementations of the σk to use the same states.

5 Solving Bounded Parity Games with Weights

After having reduced the problem of solving parity games with weights to that of solving (multiple)
bounded parity games with weights, we reduce solving bounded parity games with weights to solving
(multiple) energy parity games [4].

Similarly to a parity game with weights, in an energy parity game, the vertices are colored and the
edges are equipped with weights. It is the goal of Player 0 to satisfy the parity condition, while, at the
same time, ensuring that the weight of every infix, its so-called energy level, is bounded from below. In
contrast to a parity game with weights, however, the weights in an energy parity game are not tied to
the requests and responses denoted by the coloring.

v1/1 v2/2

−1

−1

v1/1 v2/0 v3/2
0

+1

0

0

Fig. 2. The difference between energy parity games and parity games with weights.

Consider, for example, the games shown in Figure 2. In the game on the left-hand side, players only
have a single, trivial strategy. If we interpret this game as a parity game with weights, Player 0 wins
from every vertex, as each request is answered with cost one. If we, however, interpret that game as an
energy parity game, Player 1 instead wins from every vertex, since the energy level decreases by one
with every move. In the game on the right-hand side, the situation is mirrored: When interpreting this
game as a parity game with weights, Player 1 wins from every vertex, as she can easily unbound the
costs of the requests for color one by staying in vertex v2 for an ever-increasing number of cycles. Dually,
when interpreting this game as an energy parity game, Player 0 wins from every vertex, since the parity
condition is clearly satisfied in every play, and Player 1 is only able to increase the energy level, while it
is never decreased.

6



In Section 5.1, we introduce energy parity games formally and present how to solve bounded parity
games with weights via energy games in Section 5.2. Finally, Sections 5.3 and 5.4 are dedicated to the
correctness proof of the construction.

5.1 Energy Parity Games

An energy parity game G = (A,Ω, w) consists of an arena A = (V, V0, V1, E), a coloring Ω : V → N of V ,
and an edge weighting w : E → Z of E. Note that this definition is not compatible with the framework
presented in Section 2, as we have not (yet) defined the winner of the plays. This is because they depend
on an initial credit, which is existentially quantified in the definition of winning the game G. Formally,
the set of winning plays with initial credit c0 ∈ N is defined as

EnergyParityc0(Ω, w) = Parity(Ω) ∩ {v0v1v2 · · · ∈ V ω | ∀j ∈ N. c0 + w(v0 · · · vj) ≥ 0} .

Now, we say that Player 0 wins G from v if there exists some initial credit c0 ∈ N such that he wins Gc0 =
(A,EnergyParityc0(Ω, w)) from v (in the sense of the definitions in Section 2). If this is not the case, i.e.,
if Player 1 wins Gc0 from v for every c0, then we say that Player 1 wins G from v. Note that the initial
credit is uniform for all plays, unlike the bound on the cost-of-response in the definition of the parity
condition with weights, which may depend on the play.

Unravelling these definitions shows that Player 0 wins G from v if there is an initial credit c0 and a
strategy σ, such that every play that starts in v and is consistent with σ satisfies the parity condition and
the accumulated weight over the play prefixes (the energy level) never drops below −c0. We call such a
strategy σ a winning strategy for Player 0 in G from v. Dually, Player 1 wins G from v if, for every initial
credit c0, there is a strategy τc0 , such that every play that starts in v and is consistent with τc0 violates
the parity condition or its energy level drops below −c0 at least once. Thus, the strategy τc0 may, as the
notation suggests, depend on c0. However, Chatterjee and Doyen showed that using different strategies
is not necessary: There is a uniform strategy τ that is winning from v for every initial credit c0.

Proposition 1 ([4]). Let G be an energy parity game. If Player 1 wins G from v, then she has a single
positional strategy that is winning from v in Gc0 for every c0.

We call such a strategy as in Proposition 1 a winning strategy for Player 1 from v. A play consistent
with such a strategy either violates the parity condition, or the energy levels of its prefixes diverge
towards −∞.

Furthermore, Chatterjee and Doyen obtained an upper bound on the initial credit necessary for
Player 0 to win an energy parity game, as well an upper bound on the size of a corresponding finite-state
winning strategy.

Proposition 2 ([4]). Let G be an energy parity game with n vertices, d colors, and largest absolute
weight W . The following are equivalent for a vertex v of G:

1. Player 0 wins G from v.
2. Player 0 wins G(n−1)W from v with a finite-state strategy with at most ndW states.

The previous proposition yields that finite-state strategies of bounded size suffice for Player 0 to win.
Such strategies do not admit long expensive descents, which we show by a straightforward pumping

argument.

Lemma 3. Let G be an energy parity game with n vertices and largest absolute weight W . Further, let σ
be a finite-state strategy of size s, and let ρ be a play that starts in some vertex, from which σ is winning,
and is consistent with σ. Every infix π of ρ satisfies w(π) > −Wns.

Proof. Let σ be implemented by M = (M, init, upd) and let ρ = v0v1v2 · · · . We assume towards a
contradiction that there is an infix π = vj · · · vj′ with w(π) ≤ −Wns.

We obtain a lower bound of ns+ 1 on the number of different energy levels attained during π (as W
is the maximal absolute value of the occurring weights). Moreover, we obtain ns+ 1 non-empty prefixes
of π with (1) increasing length and (2) strictly decreasing energy levels.

Thus, there are positions j0, j1 with j ≤ j0 < j1 ≤ j′ with vj0 = vj1 , upd
+(v0 · · · vj0) = upd+(v0 · · · vj1),

and w(vj0 · · · vj1) < 0. Hence, the play v0 · · · vj0−1(vj0 · · · vj1−1)
ω obtained by repeating the loop between
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vj0 and vj1 ad infinitum is consistent with σ and violates the energy condition. However, it starts in a
vertex, from which σ is a winning strategy for Player 0 in the energy parity game. This yields the desired
contradiction. ⊓⊔

Moreover, Chatterjee and Doyen gave an upper bound on the complexity of solving energy parity
games.

Proposition 3 ([4]). The following decision problem is in NP∩co-NP: “Given an energy parity game G
and a vertex v in G, does Player 0 win G from v?”

5.2 From Bounded Parity Games with Weights to Energy Parity Games

Let G = (A,BndWeightParity(Ω, w)) be a bounded parity game with weights with vertex set V . Without
loss of generality, we assume Ω(v) ≥ 2 for all v ∈ V . We construct, for each vertex v∗ of A, an energy
parity game Gv∗ with the following property: Player 1 wins Gv∗ from some designated vertex induced
by v∗ if and only if she is able to unbound the amplitude for the request of the initial vertex of the play
when starting from v∗. This construction is the technical core of the fixed-point algorithm that solves
bounded parity games with weights via solving energy parity games.

The main obstacle towards this is that, in the bounded parity game with weights G, Player 1 may
win by unbounding the amplitude for a request from above or from below, while she can only win Gv∗ by
unbounding the costs from below. We model this in Gv∗ by constructing two copies of A. In one of these
copies the edge weights are copied from G, while they are inverted in the other copy. We allow Player 1
to switch between these copies arbitrarily. To compensate for Player 1’s power to switch, Player 0 can
increase the energy level in the resulting energy parity game during each switch.

First, we define the set of polarities P = {+,−} as well as + = − and − = +. Given a vertex v∗

of A, define the “polarized” arena Av∗ = (V ′, V ′
0 , V

′
1 , E

′) of A = (V, V0, V1, E) with

– V ′ = (V × P ) ∪ (E × P × {0, 1}),
– V ′

i = (Vi × P ) ∪ (E × P × {i}) for i ∈ {0, 1}, and
– E′ contains the following edges for every edge e = (v, v′) ∈ E with v /∈ Ans(Ω(v∗)) and every

polarity p ∈ P :

• ((v, p), (e, p, 1)): The player whose turn it is at v picks a successor v′. The edge e = (v, v′) is
stored as well as the polarity p.

• ((e, p, 1), (v′, p)): Then, Player 1 can either keep the polarity p unchanged and execute the move
to v′, or

• ((e, p, 1), (e, p, 0)): she decides to change the polarity, and another auxiliary vertex is reached.
• ((e, p, 0), (e, p, 0)): If the polarity is to be changed, then Player 0 is able to use a self-loop to
increase the energy level (see below), before

• ((e, p, 0), (v′, p)): he can eventually complete the polarity switch by moving to v′.

– Furthermore, for every vertex v with Ω(v) ∈ Ans(Ω(v∗)) and every polarity p ∈ P , E′ contains the
self-loop ((v, p), (v, p)).4

Thus, a play in Av∗ simulates a play in A, unless Player 0 stops the simulation by using the self-loop
at a vertex of the form (e, p, 0) ad infinitum, and unless an answer to Ω(v∗) is reached. We define the
coloring and the weighting for Av∗ so that Player 0 loses in the former case and wins in the latter case.
Furthermore, the coloring is defined so that all simulating plays that are not stopped have the same color
sequence as the simulated play (save for irrelevant colors on the auxiliary vertices in E × P × {0, 1}).
Hence, we define

Ωv∗(v) =

󰀻
󰁁󰀿

󰁁󰀽

Ω(v′) if v = (v′, p) with v′ /∈ Ans(Ω(v∗)) ,

0 if v = (v′, p) with v′ ∈ Ans(Ω(v∗)) ,

1 otherwise .

4 Note that this definition introduces some terminal vertices, i.e., those of the form ((v, v′), p, i) with Ω(v) ∈
Ans(Ω(v∗)). However, these vertices also have no incoming edges. Hence, to simplify the definition, we just
ignore them.
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As desired, due to our assumption that Ω(v) ≥ 2 for all v ∈ V , the vertices from E × P × {0, 1} do
not influence the maximal color visited infinitely often during a play, unless Player 0 opts to remain in
some (e, p, 0) ad infinitum (and thereby violating the parity condition) or an answer to the color of v∗ is
reached (and thereby satisfying the parity condition).

Moreover, recall that our aim is to allow Player 1 to choose the polarity of edges by switching between
the two copies of A occurring in Av∗ . Intuitively, Player 1 should opt for positive polarity in order to
unbound the costs incurred by the request posed by v∗ from above, while she should opt for negative
polarity in order to unbound these costs from below. Since in an energy parity game, it is, broadly
speaking, beneficial for Player 1 to move along edges of negative weight, we negate the weights of edges
in the copy of A with positive polarity. Thus, we define

wv∗(e) =

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

−w(v, v′) if e = ((v,+), ((v, v′),+, 1)) ,

w(v, v′) if e = ((v,−), ((v, v′),−, 1)) ,

1 if e = ((e, p, 0), (e, p, 0)) ,

0 otherwise .

This definition implies that the self-loops at vertices of the form (v, p) with Ω(v) ∈ Ans(Ω(v∗)) have
weight zero. Combined with the fact that these vertices have color zero, this allows Player 0 to win Gv∗

by reaching such a vertex. Intuitively, answering the request posed at v∗ is beneficial for Player 0. In
particular, if Ω(v∗) is even, then Player 0 wins Gv∗ trivially from (v∗, p), as we then have Ω(v∗) ∈
Ans(Ω(v∗)).

Now, we define the energy parity game Gv∗ = (Av∗ ,Ωv∗ , wv∗) .

v0/5

v1/4

v2/4

v3/6

0

0

+1

0

−1

0

0

v0,+/5

v1,+/4

v2,+/4

v3,+/6

v0,−/5

v1,−/4

v2,−/4

v3,−/6

+1

+1

+1

+1

+1

+1
+1

+1

-1

+1

+1

+1

+1

+1

-1

+1

Fig. 3. A bounded parity game with weights G and the associated energy parity game Gv0 . The unnamed vertices
of Player 1 (Player 0) are of the form ((v, v′), p, 1) (of the form ((v, v′), p, 0)) when between the vertices (v, p)
and v′, p′. All missing edge weights in Gv0 are 0.

Example 1. Consider the bounded parity game with weights depicted on the left side of Figure 3 and the
associated energy parity game Gv)) on the right side. First, let us note that all other Gv for v ∕= v0 are
trivial in the following sense: they all consist of a single vertex of even color with a self-loop of weight
zero. Hence, Player 0 wins each of these games.

Player 1 wins G from v0, where a request for 1 is opened, which is then kept unanswered with infinite
cost by using the self-loop at v1 or v2 ad infinitum, depending on which successor Player 0 picks.

We show that Player 1 wins Gv0 from (v0,+)): the outgoing edges of (v0,+) correspond to picking
the successor v1 or v2 as in G. But before this is executed, Player 1 gets to pick the polarity of the
successor: he should pick + for v1 and − for v2. Now, Player 0 can either use the self-loop at her “tiny”
vertices ad infinitum. These vertices have color one, i.e., Player 1 wins the resulting play. Or, we reach
the vertex (v1,+) or (v2,−). From both vertices, Player 1 can enforce a loop of negative weight, which
allows him to win by violating the parity condition.
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Note that the winning strategy for Player 1 for G from v is very similar to that for him for Gv0 from
(v0,+). We show that one direction holds in general: A winning strategy for Player 0 for Gv from (v,+)
is “essentially” one for him in G from v.

Note that the other direction does, in general, not hold. This can be seen by adding a vertex v−1 of
color 3 with a single edge to v0. Then, vertices of the form (vi, p) with i ∈ {1, 2} in Gv−1 are winning
sinks for Player 0. Hence, she wins Gv−1 from (v−1) in spite of losing the bounded parity game with
weights from v−1.

Hence, the initial request the vertex v inducing Gv plays a special role in the construction: it is the
request Player 1 aims to keep unanswered with infinite cost. To overcome this and to complete our
construction, we show a statement reminiscent of Lemma 4: If Player 0 wins Gv from (v,+) for every v,
then she also wins G from every vertex. With this relation at hand, one can again construct a fixed-point
algorithm solving bounded parity games with weights using an oracle for solving energy parity games
that is very similar to Algorithm 1.

Lemma 4. Let G be a bounded parity game with weights with vertex set V .

1. Let v∗ ∈ V . If Player 1 wins Gv∗ from (v∗,+), then v∗ ∈ W1(G).
2. If Player 0 wins Gv∗ from (v∗,+) for all v∗ ∈ V , then W1(G) = ∅.

This lemma is the main building block for the algorithm that solves bounded parity games with
weights by repeatedly solving energy parity games, which is very similar to Algorithm 1. Indeed, we
just swap the roles of the players: We compute 1-attractors instead of 0-attractors and we change the
definition of Xk. Hence, we obtain the following algorithm (Algorithm 2).

Algorithm 2 A fixed-point algorithm computing W1(A,BndWeightParity(Ω, w)).

k = 0; W k
1 = ∅; Ak = A

repeat
k = k + 1
Xk = {v∗ | Player 1 wins the energy parity game ((Ak−1)v∗ ,Ωv∗ , wv∗) from (v∗,+)}
W k

0 = W k−1
0 ∪Attr

Ak−1
1 (Xk)

Ak = Ak−1 \Attr
Ak−1
1 (Xk)

until Xk = ∅
return W k

1

Algorithm 2 terminates after solving at most a quadratic number of energy parity games. Furthermore,
the proof of correctness is analogous to the one for Algorithm 1, relying on Lemma 4. We only need two

further properties: the 1-extendability of BndWeightParity(Ω, w), and an assertion that Attr
Ak−1

1 (Xk)
is a trap for Player 0 in Ak−1. Both are easy to verify.

Alter plugging Algorithm 2 into Algorithm 1, Proposition 3 yields our main theorem, settling the
complexity of solving parity games with weights.

Theorem 1. The following problem is in NP ∩ co-NP: “Given a parity game with weights G and a
vertex v in G, does Player 0 win G from v?”

The following two subsections are dedicated to showing the two assertions of Lemma 4. In order to
prepare for this, we first introduce some notation. Let v∗ ∈ V and consider Gv∗ . We distinguish three
types of plays in Gv∗ :

Type -1: Plays that have a suffix (e, p, 0)ω for some e ∈ E and some p ∈ P .
Type 0: Plays that visit infinitely many vertices from both V × P and E × P × {0, 1}.
Type 1: Plays that have a suffix (v, p)ω. Note that this implies Ω(v) ∈ Ans(Ω(v∗)).

Remark 2. Let ρ′ be a play in Gv∗ that starts in (v∗, p).

1. If ρ′ is consistent with a winning strategy for Player 0 from (v∗, p), then ρ′ is not a play of type −1.
2. If ρ′ is consistent with a winning strategy for Player 1 from (v∗, p), then ρ′ is not a play of type 1.
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We define the mapping unpol : V ′ → V ∪ {ε} as unpol(v, p) = v and unpol(e, p, i) = ε for v ∈
V , e ∈ E, p ∈ P , and i ∈ {0, 1}, which we extend to sequences of vertices in the straightforward way.
Let ρ′ ∈ (V ′)∗ ∪ (V ′)ω. We call unpol(ρ′) the unpolarization of ρ′.

Remark 3. Let ρ′ be a play of type 0 in some Gv∗ . We have ρ′ ∈ Parity(Ωv∗) if and only if unpol(ρ′) ∈
Parity(Ω).

5.3 Proof of Lemma 4.1

Let τv∗ be a winning strategy for Player 1 from (v∗,+) in Gv∗ . We define a winning strategy τ for Player 1
from v∗ in G such that τ mimicks the moves made by τv∗ . To this end, τ keeps track of a play prefix Gv∗ .
Formally, we define τ together with a simulation function h that satisfies the following invariant:

If π is a non-empty play prefix in A that starts in v∗, is consistent with τ , and ends in
some v, then h(π) is a play prefix in Av∗ that starts in (v∗,+), is consistent with τv∗ , and ends
in some (v, p). Furthermore, unpol(h(π)) = π.

Recall that, if h has the properties described above, then, due to the structure of Av∗ , for each π,
given h(π), the strategy τv∗ prescribes a move to some vertex ((v, v′), p, 1), where (v, v′) ∈ E. We can
mimic this choice by moving to v′ in G.

We now define h and τ formally and begin with h(v∗) = (v∗,+), which clearly satisfies the invariant.
Now let π = v0 · · · vj be some non-empty play prefix in A beginning in v∗ and consistent with τ such
that h(π) is defined. Due to the invariant, h(π) ends in (vj , pj) for some pj ∈ P .

If vj ∈ V1, let vj+1 be such that h(π) · ((vj , vj+1), pj , 1) is consistent with τv∗ and define τ(π) = vj+1.
Such a vj+1 exists, because (vj , pj), the last vertex of h(π), satisfies Ω(vj) /∈ Ans(Ω(v∗)) due to the
invariant, Remark 2.2, and because the answering vertices are sinks. If, however, vj ∈ V0, then let vj+1

be an arbitrary successor of vj in A. In either case, it remains to define h(π · vj+1).
Since we want to simulate the move from vj to vj+1 in h(π · vj+1), we first move from (vj , pj)

to ((vj , vj+1), pj , 1). Moreover, in order to satisfy the invariant, we aim to simulate the play prefix π ·vj+1

such that h(π · vj+1) is consistent with τv∗ . This strategy may prescribe for Player 1 to either preserve
the polarity pj , or to switch it during the simulated move from vj to vj+1.

In the former case, i.e., if τv∗(h(π) · ((vj , vj+1), pj , 1)) = (vj+1, pj), we define h(π · vj+1) = h(π) ·
((vj , vj+1), pj , 1) · (vj+1, pj). In the latter case, Player 0 gets an opportunity to recharge the energy by
taking the self-loop of the vertex ((vj , vj+1), pj , 0) finitely often. We opt to let her recover the energy lost
so far in the play prefix, i.e., we pick cj = max{0,−w(h(π) · ((vj , vj+1), pj , 1)} and define h(π · vj+1) =
h(π) · ((vj , vj+1), pj , 1) · ((vj , vj+1), pj , 0)

cj · (vj+1, pj) in this case. Since h(π · vj+1) is consistent with τv∗

in either case, we satisfy the invariant in either case. This completes the definition of τ and h.
It remains to show that τ is indeed winning from v∗ in G. To this end, let ρ = v0v1v2 · · · be a play

in A that starts in v∗ and is consistent with τ . We show ρ /∈ BndWeightParity(Ω, w) by examining the
play ρ′ in Av∗ , which is limit of the h(π) for increasing prefixes π of ρ. Due to the invariant, ρ′ starts
in (v∗,+) and is consistent with τv∗ . Moreover, due to the construction of h, we obtain unpol(ρ′) = ρ.
Finally, we have that ρ′ is a play of type 0 in Gv∗ . Hence, due to Remark 3, ρ satisfies the parity condition
if and only if ρ′ satisfies the parity condition.

As ρ′ is consistent with the winning strategy τv∗ , we have ρ′ /∈ EnergyParity(Ωv∗ , wv∗), i.e., ρ′ either
violates the parity condition or the energy condition. Hence, as argued above, if ρ′ violates the parity
condition, then so does ρ, i.e., ρ is indeed winning for Player 1.

Now assume that ρ′ violates the energy condition. Due to the structure of Av∗ and the construction
of h we have

ρ′ = Πj=0,1,2,...(vj , pj) · ((vj , vj+1), pj , 1) · ((vj , vj+1), pj , 0)
mj

for somemj ∈ N. Since ρ′ violates the energy condition, we have infj∈N w((v0, p0) · · · (vj , pj)·((vj , vj+1), pj , 1)) =
−∞. The restriction to play prefixes of this form suffices due to the structure of Av∗ and, in turn, the
structure of ρ′. Moreover, since Player 1 wins Gv∗ from (v∗,+), the initial vertices v∗ and (v∗,+) of ρ
and ρ′, respectively, have the same odd color. Also, as ρ′ is a play of type 0, the request for the color Ω(v∗)
is never answered in ρ or ρ′. We show that the request for Ω(v∗) in ρ is unanswered with infinite cost,
which concludes the proof.
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To this end, we split ρ′ into infixes of constant polarity. Given a vertex v = (v′, p) or v = ((v′, v′′), p, i),
we call p the polarity of v. Let ρ′ = ν′0ν

′
1ν

′
2 · · · , where each ν′j is a maximal finite (or infinite) infix (or

suffix) of ρ′, such that all vertices in ν′j have the same polarity. We call an infix ν′j of ρ
′ an equi-polarity

infix (EPI) of ρ′.

Since the polarity remains constant throughout each ν′j , Player 0 only resets the energy via repeatedly
traversing a self-loop of a vertex in Av∗ at the last vertex visited in ν′j , if at all. Hence, the energy levels
attained during ν′j and unpol(ν′j) are closely related.

Remark 4. Let ν′ be an EPI beginning in (vj , pj) and let ν = unpol(ν′) = vjvj+1vj+2 · · · . For each j′

with j ≤ j′ < j + |ν|, we have |w(vj · · · vj′)| = |w((vj , pj) · · · (vj′ , pj′))|.

In particular, Remark 4, the structure of Av∗ , and the definition of h imply Ampl(unpol(ν′)) =
Ampl(ν′) for all EPIs ν′ of ρ′. Thus, if there exist only finitely many EPIs of ρ′, let ν′ be the infinite
final EPI of ρ′, let ν = unpol(ν′), and note that, due to Ampl(ρ′) = ∞, we have Ampl(ν′) = ∞. Due to
Remark 4, we obtain Ampl(ν) = ∞, which implies that the request posed at the initial position of ρ is
unanswered with infinite cost due to the reasoning above, as ν is a suffix of ρ.

If, however, there exist infinitely many EPIs of ρ′, assume towards a contradiction that the cost of
answering the request posed at the initial position of ρ is finite. By construction of ρ′, the energy level is
non-negative at the end of each EPI. Since ρ′ violates the energy condition, for each bound b ∈ N there
exists an EPI ν′ of ρ′ with a prefix of weight strictly smaller than −b. We obtain Ampl(unpol(ν′)) > b
via Remark 4. This contradicts the cost of answering the request posed at the initial position of ρ being
bounded and concludes the proof of Lemma 4.1.

5.4 Proof of Lemma 4.2

To prove Lemma 4.2, we construct a strategy σ for Player 0 in G that is winning for her from each
vertex v ∈ V . As winning regions are disjoint, this implies the desired result.

For each energy parity game Gv = (Av,Ωv, wv) we have n
′ = |Av| ∈ O(|A|2), we have d′ = |Ωv(V

′)| =
|Ω(V )| + 2, and we have W ′ = max(w(E′)) = max(w(E) ∪ {1}), where E and E′ are the sets of edges
in A and the Av, respectively. Note that the values n′, d′, and W ′ of Gv are independent of the vertex v,
which explains our notation. Due to the assumption of the statement and Proposition 2, for each v ∈ V ,
there exists a finite-state strategy σv with at most n′d′W ′ states that is winning for Player 0 from (v,+)
in Gv.

We construct the winning strategy σ for Player 0 in G by “stitching together” the individual σv.
To this end, given a play prefix, we identify the request which should be answered most urgently. Say
this request was opened by visiting vertex v. The strategy σ then mimics the moves made by σv when
starting in (v,+). Once the request for Ω(v) is answered, σ makes arbitrary moves until a new request
is opened.

Formally, given a play prefix π = v0 · · · vj , we say that a request for color c is open in π if there
exists a position j′ with 0 ≤ j′ ≤ j such that Ω(vj′) = c and, for all positions j′′ with j′ ≤ j′′ ≤ j, we
have Ω(vj′′) /∈ Ans(Ω(v′j)). Note that there is never an open request for an even color.

If there is no open request in π, the position of the most relevant request is undefined and we
write posMRR(π) = ⊥. Otherwise, let c be the maximal color, for which there is an open request in π.
We define posMRR(π) as the smallest position j′, such that the request for color c is open in all prefixes
of π of length greater than j′.

As an example, consider the play prefix shown in Figure 4 using the notation v/Ω(v). We mark a
position j in red with solid background if posMRR(v0 · · · vj) = j and in green with dashed background
if posMRR(v0 · · · vj) = ⊥. Otherwise, i.e., if ⊥ ∕= posMRR(v0 · · · vj) < j, we leave j unmarked. For those
positions, posMRR(v0 · · · vj) is equal to the largest (i.e., last visited) earlier position marked in red.

Ω(ρ) = v0/0 v1/0 v2/2 v3/1 v4/0 v5/1 v6/3 v7/1 v8/4 v9/0 v10/2 v11/1 v12/1 · · ·

ν0 ν1 ν2 ν3
Fig. 4. A play ρ, its induced color sequence, its most relevant requests, and the ESIs of ρ.
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In order to leverage the moves made by the strategies for the Gv in G, we need to simulate play
prefixes in the latter game in the former ones. To this end, we again define σ together with a simulation
function h. This function h maps a play prefix consistent with σ to a sequence of vertices from V ′ (not
necessarily a play prefix) such that we are able to leverage the choices made by the σv in order to define σ.
Our aim is to define h such that it satisfies the following invariant:

Let π = v0 · · · vj be a play in A consistent with σ. Then h(π) ends in some (vj , pj). Moreover,
if posMRR(π) = j′ ∕= ⊥, then h(π) has a (unique) suffix (vj′ ,+) · · · (vj , pj) that is consistent
with σvj′ and satisfies unpol((vj′ ,+) · · · (vj , pj)) = vj′ · · · vj .

We define h and σ inductively and begin with h(v) = (v,+) for each v ∈ V , which clearly satisfies
the invariant. Now let π = v0 · · · vj be a non-empty play prefix in A starting in v∗ and consistent with σ
such that h(π) is defined. If vj ∈ V1, let vj+1 be an arbitrary successor of vj in A. If, however, vj ∈ V0, we
distinguish two cases based on posMRR(π). If posMRR(π) = ⊥, again let vj+1 be an arbitrary successor
of vj . If, however, posMRR(π) = j′ ∕= ⊥, then the invariant of h yields a suffix (vj′ ,+) · · · (vj , pj) of h(π)
that is consistent with σvj′ . Let vj+1 such that (vj′ ,+) · · · (vj , pj)·((vj , vj+1), pj , 1) is consistent with σvj′ .
Such a vertex vj+1 exists, because the request posed by visiting vj′ is open in π due to posMRR(π) = j′.
Since vj ∈ V0, the vertex vj+1 is unique.

It remains to define h(π · vj+1) in such a way, that it satisfies the above invariant. To this end,
we use one of two operations. Firstly, we define the discontinuous extension of h(π) with vj+1 as
h(π) · (vj+1,+). Secondly, we define a simulated extension of h(π) such that we obtain h(π · vj+1) by
simulating the move from vj to vj+1 in some Gv. Formally, we define the simulated extension of h(π)
with vj+1 and charge m as h(π) · ((vj , vj+1), pj , 1) · ((vj , vj+1), pj , 0)

m · (vj+1, pj+1), where pj+1 = pj
if m = 0 and pj+1 = pj otherwise. This ensures that the extension is a play infix in some Gv.

We first distinguish two cases. If posMRR(π) = ⊥, we define h(π · vj+1) to be the discontinuous
extension of h(π) with vj+1. This clearly satisfies the first condition of the invariant. Moreover, the
second condition of the invariant is satisfied as well: If posMRR(π · vj+1) = ⊥, this condition holds true
vacuously. Otherwise, we have posMRR(π ·vj+1) = j+1 and observe that the suffix (vj+1,+) of h(π ·vj+1)
satisfies the second condition of the invariant.

If, however, posMRR(π) ∕= ⊥, let posMRR(π) = j′. We distinguish three sub-cases. First, assume that
the move to vj+1 neither opens a new most relevant request, nor answers the existing one, i.e., posMRR(π·
vj+1) = j′. In this case, we extend the suffix of h(π) that is consistent with σvj′ by simulating the move
from vj to vj+1. Recall that we picked vj+1 such that (vj′ ,+) · · · (vj , pj) · ((vj , vj+1), pj , 1) is consistent
with σvj′ . As we can freely define the choice of Player 1 in the simulation, we follow the intuition stated
during the construction of the polarized arena. Recall that both players are currently playing “with
respect to” the request for Ω(vj′) opened by visiting vj′ . Hence, we opt to let Player 1 move to positive
polarity if the cost of the request for Ω(vj′) so far is nonnegative, and let her move to negative polarity
otherwise.

We use Sgn(n) = + for n ≥ 0 and Sgn(n) = − for all other n. If Sgn(w(vj′ · · · vj+1)) = pj , we
define h(π · vj+1) to be the simulated extension of h(π) with vj+1 and charge 0. Otherwise, i.e., if
Sgn(w(vj′ · · · vj+1)) = pj , letm ∈ N such that σvj′ ((vj′ ,+) · · · (vj , pj)·((vj , vj+1), pj , 1)·((vj , vj+1), pj , 1)

m) =
(vj+1, pj). Such an m exists, as otherwise the play (vj′ ,+) · · · (vj , pj) ·((vj , vj+1), pj , 1) ·((vj , vj+1), pj , 0)

ω

of type −1 that starts in (vj′ ,+) would be consistent with the winning strategy σvj′ from (vj′ ,+) for
Player 0, a contradiction to Remark 2.1. In this case, we define h(π · vj+1) to be the simulated extension
of h(π) with vj+1 and charge m. Since we have posMRR(v0 · · · vj+1) = j′ by assumption, either definition
of h(π · vj+1) satisfies the invariant.

It remains to define h(π · vj+1) for the two remaining cases, i.e., for the case that the move to vj+1

answers the most relevant request in π, and for the case that the request posed by visiting vj+1 is the most
relevant request of π ·vj+1. Formally, we have posMRR(π ·vj+1) = ⊥ in the former case and posMRR(π ·
vj+1) = j + 1 in the latter one. In either case, we define h(π · vj+1) to be the discontinuous extension
of h(π) with vj+1 and observe that the first condition of the invariant holds. If posMRR(π · vj+1) = ⊥,
the second condition of the invariant vacuously holds. If, however, posMRR(π · vj+1) = j + 1, then the
suffix (vj+1,+) witnesses that the second condition of the invariant holds. This completes the definition
of σ and h.

It remains to show that the strategy σ is indeed winning for Player 0 from v∗. To this end, fix
some play ρ = v0v1v2 · · · consistent with σ starting in v∗, and let ρ′ be the limit of the h(π) for
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increasing prefixes π of ρ. By the construction of h, we obtain unpol(ρ′) = ρ. Hence, the play ρ′ is of the
form (v0, p0) · · · (v1, p1) · · · (v2, p2) · · · . We call a position j of ρ a discontinuity of ρ if either j = 0 or
if h(v0 · · · vj) is the discontinuous extension of h(v0 · · · vj−1) by vj .

Let j and j′ be adjacent discontinuities of ρ. We call the infix vj · · · vj′−1 of ρ an equi-strategic infix
(ESI) of ρ. Moreover, if there only exist finitely many discontinuities of ρ, let j∗ be its final discontinuity.
We call the suffix vj∗vj∗+1vj∗+2 · · · of ρ the terminal ESI of ρ.

Remark 5. Let ν = vjvj+1vj+2 · · · be an ESI.

1. If ν is finite, then the infix ν′ of ρ′ starting at position |h(v0 · · · vj)| and ending at position |h(v0 · · · vj+|ν|−1)|
starts in (vj ,+), ends in some (vj+|ν|−1, p), and is consistent with σvj

.
2. If ν is infinite, then the suffix ν′ of ρ′ starting at position |h(v0 · · · vj)| starts in (vj ,+) and is consistent

with σvj
.

For each position j of ρ we define ESI(j) = k if the k-th ESI of ρ contains vj . Moreover, if ν =
vjvj+1vj+2 · · · is an ESI of ρ, then we call Ω(vj) the characteristic color of ν. By the construction
of h, if the characteristic color of an ESI ν is even, then ν consists only of a single vertex. If, however, the
characteristic color c of an ESI ν is odd, then we have Ω(v) ≤ c for all vertices v in ν. Moreover, let c′ be
the characteristic color of the ESI succeeding ν, if ν is not the terminal ESI of ρ. Due to the construction
of h, we have c′ > c. If c′ is even, this observation implies c′ ∈ Ans(Ω(v)) for all vertices v in ν. As the
number of colors in G is finite, this in turn implies that the number of ESIs between a request and its
response (if a response exists at all) is bounded.

Remark 6. Let j be some position in ρ and let k = ESI(j). Moreover, let d be the number of colors in G.

1. If the request at position j is first answered at position j′, then ESI(j′) < k + d
2. If the request at position j is unanswered in ρ, then ρ contains less than k + d many ESIs.

Recall that the bounded parity condition with weights requires the play ρ to not only satisfy the parity
condition, but also that the cost of almost all requests is bounded and that there exists no unanswered
request with infinite cost in ρ. We first show that ρ satisfies the classical parity condition. In a second
step, we then show that there exists a bound on the cost of each (answered or unanswered) request in ρ.
The former condition, i.e., that ρ satisfies the parity condition, is in large parts implied by Remark 6.

Lemma 5. The play ρ satisfies the parity condition.

Proof. If ρ contains no unanswered requests, then it vacuously satisfies the parity condition. Hence,
let j be the position of such an unanswered request in ρ. Due to Remark 6, we obtain that there exist
only finitely many ESIs in ρ. Let ν = vj∗vj∗+1vj∗+2 · · · be the terminal ESI of ρ. By the construction
of h, there exists a suffix ν′ of ρ′ with unpol(ν′) = ν. Due to Remark rem:esi:equivalence:infinite.5, the
suffix ν′ begins in (vj∗ ,+) and is consistent with the winning strategy σvj∗ for Player 0 from (vj∗ ,+)
in Gvj∗ . Moreover, ν′ is a play of type 0 due to ν′ being the terminal ESI of ρ and due to being consistent
with σvj∗ . Hence, we obtain that ν satisfies the parity condition via Remark 3, which in turn implies
that ρ satisfies the parity condition. ⊓⊔

It remains to show that the costs of requests in ρ are bounded. Recall that we defined n′ = |Av|, d′
as the largest color of a vertex in the Gv, and W ′ as the largest absolute weight of an edge. We claim
that the costs of the most relevant requests in ρ are bounded by (n′d′W ′)2. This implies that the cost of
all requests is bounded: Due to Remark 6 we obtain that the number of ESIs between a request and its
response, if one exists, is bounded by d. Hence, it suffices to show that each ESI contributes at most a
bounded amount to the cost of answering a request.

Lemma 6. Let ν = vjvj+1vj+2 · · · be an ESI of ρ. For each j′ with j ≤ j′ < j+|ν| we have |w(vj · · · vj′)| ≤
d′(n′W ′)2.

Proof. Towards a contradiction let j′ be a position with j ≤ j′ < j+|ν|, such that we have |w(vj · · · vj′)| >
d′(n′W ′)2. We assume w(vj · · · vj′) > d′(n′W ′)2, i.e., that the infix vj · · · vj′ violates the claimed bound
from above. The other case is dual. Since each traversed edge adds a cost of at most W ′, there exists
a minimal position j′′ such that, for all k with j′′ ≤ k ≤ j′, we have w(vj · · · vk) > 0. Let π′ =
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Fig. 5. Bounds on the cost of a request over time given by Lemma 6. We write ∆ = d′(n′W ′)2.

(vj′′ , pj′′) · · · (vj′ , pj′) be an infix of ρ′ such that unpol(π′) = vj′′ · · · vj′ . The polarity remains positive
throughout π′ due to the construction of h, while we have wvj

(π′) < −d′(n′W ′)2. Moreover, by definition
of ESIs, the infix π′ is an infix of a play that starts in (vj ,+) and is consistent with σvj . This, however,
contradicts Lemma 3. ⊓⊔

Due to Lemma 6, each ESI strictly in-between a request and its response contributes at most d′(n′W ′)2

to the cost incurred by the request. Similarly, the ESI containing the request and its response also
contribute at most d′(n′W ′)2 each to the cost of answering the given request. Hence, via Remark 6, we
obtain that each (answered or unanswered) request in ρ incurs a cost of at most (d′n′W ′)2. We illustrate
this argument in Figure 5. Hence, σ is a winning strategy for Player 0 from v∗ in G, as each play that
starts in v∗ and is consistent with σ satisfies the parity condition due to Lemma 5 and because no such
play contains a request that is unanswered with infinite cost, which concludes the proof of Lemma 4.2.

Before we conclude this section, we formalize the above observation about the winning strategy for
Player 0 uniformly bounding the costs of requests in the following corollary.

Corollary 1. Let G be a bounded parity game with weights with n vertices, d colors, and largest absolute
weight W . There exists a strategy σ for Player 0 that is winning from W0(G), such that in each play ρ
consistent with σ, each request is answered or unanswered with cost at most ((d+2)(2n+4n2)(W +1))2.

Using arguments from Section 7, this bound can be improved to ((d+ 2)(6n)(W + 1))2. However, as
we only use Corollary 1 later to obtain some upper bound on the quality of such strategies, we refrain
from repeating these arguments here.

6 Memory Requirements

We now discuss the upper and lower bounds on the memory required to implement winning strategies
for either player. Recall that we use binary encoding to denote weights, i.e., weights may be exponential
in the size of the game. In this section we show polynomial (in n, d, and W ) upper and lower bounds on
the necessary and sufficient memory for Player 0 to win parity games with weights. Due to the binary
encoding of weights, these bounds are exponential in the size of the game. In contrast, Player 1 requires
infinite memory.

Theorem 2. Let G be a parity game with weights with n vertices, d colors, and largest absolute weight W
assigned to any edge in G. Moreover, let v be a vertex of G.

1. Player 0 has a winning strategy σ from W0(G) with |σ| ∈ O(nd2W ). This bound is tight.
2. Player 1 requires, in general, infinite memory to win from W1(G).
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The proof of the second item of Theorem 2 is straightforward, since Player 1 already requires infinite
memory to implement winning strategies in finitary parity games [7]. Since parity games with weights
subsume finitary parity games, this result carries over to our setting. We show the game witnessing this
lower bound on the right-hand side of Figure 2.

Proposition 4 ([7]). There exists a parity game with weights G, such that Player 1 has a winning
strategy from each vertex v in G, but she has no finite-state winning strategy from any v in G.

Having argued that no finite upper bound on the space requirements of winning strategies for Player 1
exists, we now show that, in contrast, exponential memory is sufficient, but also necessary, for Player 0.
To this end, we first prove that the winning strategy for him constructed in the proof of Lemma 4.2
suffers at most a linear blowup in comparison to his winning strategies in the underlying energy parity
games. This is sufficient as we have argued in Section 4 that the construction of a winning strategy for
Player 0 in a parity game with weights suffers no blowup in comparison to the underlying bounded parity
games with weights.

Lemma 7. Let G, n, d, and W be as in Theorem 2. Player 0 has a finite-state winning strategy of size
at most d(6n)(d+ 2)(W + 1) from W0(G).

Proof. We only show the above result for the case where G is a bounded parity game with weights. The
result for the case where G is a parity game with weights then follows directly as argued above.

Let V and E be the vertex set of G and recall that we have defined P = {+,−}. In the proof of
Lemma 4.2, we have constructed an energy parity game Gv with vertices (V ×P )∪(E×P×{0, 1}) for each
vertex v of G. We have then constructed a winning strategy σ for Player 0 for G out of winning strategies
for her in the Gv. As it is straightforward to implement σ via the disjoint union of memory structures
implementing the constituent strategies, this approach yields an upper bound of n(2n+4n2)(d+2)(W+1)
on the size of σ due to the upper bound on the size of winning strategies for Player 0 in energy parity
games from Proposition 2.

In the construction of the Gv, however, we only store the edges chosen by the players in the vertices
of the form E × P × {0, 1} for didactic purposes. In fact, it suffices to store the target vertex of an
edge instead, resulting in a vertex set of size 6n of the Gv. Moreover, recall that the definition of the Gv

only takes the color of v into account: If the vertices v and v′ have the same color, then the games Gv

and Gv′ are isomorphic. Further, Chatterjee and Doyen have shown that, if Player 0 wins an energy
parity game G′ with n′ vertices, d′ colors, and largest absolute weight W ′, then he has a uniform strategy
of size n′d′W ′ that is winning from all vertices, from which he wins G′ [4]. Hence, it suffices to combine
at most d strategies, each of size (6n)(d+ 2)(W + 1), in order to obtain a winning strategy for Player 0
in G. ⊓⊔

Having established an upper bound on the memory required by Player 0, we now proceed to show
that this exponential bound is indeed tight, which is witnessed by the games Gn depicted in Figure 6.

Lemma 8. Let n ∈ N. There exists a parity game with weights Gn with |Gn| ∈ O(n) such that Player 0
wins Gn from every vertex, but each winning strategy for her is of size at least n2n + 1.

vreq/3 v′
req,1/1 · · · v′

req,n/1 vdel/1 v′
ans/2 vans/4

0 W W W

−1

0

0

0

0

n vertices

Fig. 6. A game of size O(n) in which Player 0 only wins with strategies of size at least n2n + 1.

Proof. We show the game Gn in Figure 6. This game has n+4 vertices and the largest absolute weight of
an edge is W = 2n. Hence, we have |Gn| = n+4+ log(W ) ∈ O(n). Note that the only choice of Player 0
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in Gn consists in determining how often to take the self-loop of vertex vdel upon each visit. Dually, the
only choice of Player 1 consists of deciding whether or not to move from v′ans to v′req,1, or to continue
to vans.

Player 0 wins Gn from each vertex by remaining in vdel for nW moves after each visit to vdel and by
subsequently moving to v′ans. Each request in each play that is consistent with this strategy is answered
or unanswered with cost n2n, independent of the choices of Player 1 in vans. Moreover, as the only way
to visit vreq is to move there from vans, the play visits vans infinitely often if and only if it visits vreq
infinitely often. Further, the play visits v′req,1 and v′ans infinitely often. Hence, all requests are answered,
i.e., this strategy is winning for Player 0 from all vertices. This strategy can be implemented by a counter
that counts the number of self-loops of vdel taken so far, which is reset to nW after leaving vdel. As this
counter is bounded by nW , the strategy is of size nW + 1 = n2n + 1.

It remains to show that each winning strategy for Player 0 has at least n2n+1 memory states. Towards
a contradiction, let σ be a winning strategy for Player 0 from some vertex v with less than n2n+1 many
memory states and let ρ be a play that starts in v and is consistent with σ. We implement a strategy for
Player 1 using a counter κ that is initialized with one if v = vreq and with zero otherwise. Moreover, we
increment κ upon each visit to vreq. After each visit to vreq, the strategy τ prescribes moving from v′ans
to v′req,1 for the first κ visits to v′ans, and it prescribes moving from v′ans to vans at the κ + 1-th visit
to v′ans. Hence, after the κ+ 1-th visit to v′ans, the vertex vreq is visited again, κ is incremented and the
behavior of τ described above repeats with incremented κ.

Let ρ be the unique play consistent with σ and τ . Since σ is winning for Player 0, the play ρ does not
have a suffix of the form (vdel)

ω. Hence, playing consistently with τ , Player 1 enforces a play that starts
with a (possibly empty) finite prefix that ends before the first visit to vreq and infinitely many rounds,
where each round starts in vreq. The j-th round is of the form vreq ·Πk=0,...,j(v

′
req,1 · · · v′req,n · (vdel)ℓj,k ·

v′ans) · vans.
We first show ℓj,k < nW +1 for all j, k. Towards a contradiction, assume ℓj,k ≥ nW +1 for some j, k.

Since σ is of size less than nW+1, a straightforward pumping argument shows that the play ρ′ consisting
of the finite prefix of ρ concatenated with the first j − 1 rounds of ρ, but ending in the infinite suffix

vreq ·Πk′=0,...,k−1(v
′
req,1 · · · v′req,n · (vdel)ℓj,k′ · v′ans) · v′req,1 · · · v′req,n · (vdel)ω

is consistent with σ. This, however, contradicts that σ is a winning strategy for Player 0, as vdel has odd
color. Hence, ℓj,k < nW + 1 for all j, k.

Since each edge (v′req,n′ , v′req,n′+1) for 1 ≤ n′ ≤ n has weight W , we obtain w(v′req,1 ·(vdel)ℓj,k ·v′ans) > 0

for all j, k. This, in turn, implies w(vreq · Πk=0,...,j(v
′
req,1 · · · v′req,n · (vdel)ℓj,k′ · v′ans) ≥ j + 1 for each j.

Since, as argued above, the play ρ consistent with σ consists of infinitely many rounds, we obtain that
for each b ∈ N there exist infinitely many requests in ρ that are answered with cost at least b. This
contradicts σ being a winning strategy for Player 0. ⊓⊔

7 Quality of Strategies

We have shown in the previous section that finite-state strategies of bounded size suffice for Player 0 to
win in parity games with weights, while Player 1 clearly requires infinite memory. However, as we are
dealing with a quantitative winning condition, we are not only interested in the size of winning strategies,
but also in their quality. More precisely, we are interested in an upper bound on the cost of requests that
Player 0 can ensure. In this section, we show that he can guarantee an exponential upper bound on such
costs. Dually, Player 1 is required to unbound the cost of responses.

Theorem 3. Let G be a parity game with weights with n vertices, d colors, and largest absolute weight W .
There exists a b ∈ O((ndW )2) and a strategy σ for Player 0 such that, for all plays ρ beginning

in W0(G) and consistent with σ, we have lim supj→∞ Cor(ρ, j) ≤ b. This bound is tight.

We first show that Player 0 can indeed ensure an upper bound as stated in Theorem 3. We obtain
this bound via a straightforward pumping argument leveraging the upper bound on the size of winning
strategies obtained in Lemma 7 .

Lemma 9. Let G, n, d, and W , and v be as in the statement of Theorem 3 and let s = d(6n)(d+2)(W +
1). Player 0 has a winning strategy σ such that, for each play ρ that starts in W0(G) and is consistent
with σ, we have lim supj→∞ Cor(ρ, j) ≤ nsW .
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Fig. 7. Illustration of the approach to the proof of Lemma 9.

Proof. We illustrate our approach as well in Figure 7 Let σ be a winning strategy for Player 0 in G
from W0(G) of size at most s. Due to Lemma 7, such a strategy exists. Let ρ = v0v1v2 · · · be a play that
starts in W0(G) and is consistent with σ. We call a position j ∈ N sumptuous if nsW < Cor(ρ, j) < ∞.
Each sumptuous position j has some odd color c, and the request for c posed by visiting vj is eventually
answered.

Assume towards a contradiction that there exist infinitely many sumptuous positions. We define a
sequence of positions that begins with the first sumptuous position j0. For each jk, we define j′k as the
minimal position with Ω(vj′k) ∈ Ans(Ω(vjk)). Finally, each jk is the smallest sumptuous position greater
than j′k−1. The sequence p = j0 < j′0 < j1 < j′1 < j2 < j′2 < · · · is infinite: There exist infinitely many
sumptuous positions by assumption. Moreover, the requests posed at almost all sumptuous positions are
eventually answered. Otherwise the play ρ would violate the parity condition, which would contradict
that ρ is consistent with the winning strategy σ for Player 0.

Due to the definition of sumptuous positions and the j′k, we have Ampl(vjk · · · vj′k) > nsW for
each k ∈ N. Since ρ is consistent with the finite-state strategy σ of size s, in each such vjk · · · vj′k there
exists an infix that can be repeated arbitrarily often while retaining consistency with σ. To identify
such infixes, we separate the sumptuous positions jk into two groups: We call a position jk positively
sumptuous if there exists a j′ with jk ≤ j′ ≤ j′k such that w(vjk · · · vj′) > nsW and negatively
sumptuous otherwise.

Let σ be implemented by (M, init, upd). As each edge contributes cost at most W to Ampl(vjk · · · vj′k),
this implies that there exist positions ℓk and ℓ′k with jk < ℓk < ℓ′k < j′k such that

– vℓk = vℓ′k ,

– upd+(v0 · · · vℓk) = upd+(v0 · · · vℓ′k),
– w(vℓk · · · vℓ′k−1) > 0, if jk is positively sumptuous, and such that
– w(vℓk · · · vℓ′k−1) < 0, if jk is negatively sumptuous.

The positions jk, ℓk, ℓ
′
k, and j′k split ρ into infixes ρ = Πk=0,1,2,...πk,I ·πk,II ·πk,III ·πk,IV , where πk,I , πk,II , πk,III ,

and π0,IV start at jk, ℓk, ℓ
′
k, and j′k, respectively. Due to the definition of ℓk and ℓ′k, the play ρ′ =

Πk=0,1,2,...πk,I · (πk,II )
k · πk,III · πk,IV is consistent with σ. The costs-of-response of the requests opened

by visiting the vjk , however, diverge due to |w(πk,II )| = |w(vℓk · · · vℓ′k−1)| > 0. Hence, ρ′ violates the
parity condition with weights, which contradicts that σ is a winning strategy of Player 0. ⊓⊔

Having thus shown that Player 0 can indeed ensure an exponential upper bound on the incurred cost,
we now proceed to show that this bound is tight. A simple example shows that there exists a series of
parity games with weights, in which Player 0 wins from every vertex, but in which he cannot enforce a
sub-exponential cost of any request.

Lemma 10. Let n ∈ N. There exists a parity game with weights Gn with |Gn| ∈ O(n) and a vertex v ∈
W0(G), such that for each winning strategy for Player 0 from v there exists a play ρ starting in v and
consistent with σ with lim supj→∞ Cor(ρ, j) ≥ (n− 1)2n.

Proof. We show the game Gn in Figure 8. The arena of Gn is a cycle with n vertices of Player 1, where
each edge has weight 2n. Moreover, one vertex is labeled with color two, its directly succeeding vertex is
labeled with color one. All remaining vertices have color zero.
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Fig. 8. The game Gn witnessing an exponential lower bound on the cost that Player 0 can ensure.

Player 0 only has a single strategy in this game and there exist only n plays in Gn, each starting in
a different vertex of Gn. In each play, each request for color one is only answered after n− 1 steps, each
contributing a cost of 2n. Hence, this request incurs a cost of (n − 1)2n. Moreover, as this request is
posed and answered infinitely often in each play, we obtain the desired result. ⊓⊔

8 From Energy Parity Games to (Bounded) Parity Games with Weights

We have discussed in Sections 4 and 5 how to solve parity games with weights via solving bounded
parity games with weights and how to solve the latter games by solving energy parity games, both steps
with a polynomial overhead. An obvious question is whether one can also solve energy parity game by
solving (bounded) parity games with weights. In this section, we answer this question affirmatively. We
show how to transform an energy parity game into a bounded parity game with weights so that solving
the latter also solves the former. Then, we show how to transform a bounded parity game with weights
into a parity game with weights with the same relation: Solving the latter also solves the former. Both
constructions here are gadget based and increase the size of the arenas only linearly. Hence, all three
types of games considered here are interreducible with at most polynomial overhead.

8.1 From Energy Parity Games to Bounded Parity Games with Weights

Note that, in an energy parity game, Player 0 wins if the energy increases without a bound, as long
as there is a lower bound. However, in a bounded parity game, he has to ensure an upper and a lower
bound. Thus, we show in a first step how to modify an energy parity game so that Player 0 still has to
ensure a lower bound on the energy, but can also throw away unnecessary energy during each transition,
thereby also ensuring an upper bound. The most interesting part of this construction is to determine
when energy becomes unnecessary to ensure a lower bound. Here, we rely on Lemma 3.

Formally, let G = (A,Ω, w) be an energy parity game with A = (V, V0, V1, E) where we assume
w.l.o.g. that the minimal color in Ω(V ) is strictly greater than 1. Now, we define G′ = (A′,Ω′, w′) with
A = (V, V0, V1, E) where

– V ′ = V ∪ E, V ′
0 = V0 ∪ E, and V ′

1 = V1,

– E′ = {(v, e), (e, e), (e, v′) | e = (v, v′) ∈ E},
– Ω′(v) = Ω(v) and Ω′(e) = 1, and

– w′(v, e) = w(e), w′(e, e) = −1, and w(e, v′) = 0 for every e = (v, v′) ∈ E.

Intuitively, every edge of A is subdivided and a new vertex for Player 0 is added, where he can decrease
the energy level. The negative weight ensures that he eventually leaves this vertex in order to satisfy an
energy condition.

We say that a strategy σ for Player 0 in A′ is corridor-winning for him from some v ∈ V , if there is
a b ∈ N such that every play ρ that starts in v and is consistent with σ satisfies the parity condition and
Ampl(ρ) ≤ b. Hence, instead of just requiring a lower bound on the energy level as in the energy parity
condition, we also require a uniform upper bound on the energy level (where we w.l.o.g. assume these
bounds to coincide).

Lemma 11. Let G and G′ be as above and let v ∈ V . The following are equivalent:

1. Player 0 has a winning strategy for G from v.

2. Player 0 has a corridor-winning strategy for G′ from v.
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Proof. 1 ⇒ 2: Due to Proposition 2, Player 0 has a winning finite-state strategy σ for G from v, say
of size s. Furthermore, there is an initial credit c0 such that every play prefix π that starts in v and
is consistent with σ satisfies w(π) ≥ −c0. Finally, define b = Wns, where n and W are defined as in
Lemma 3.

We define a strategy σ′ for Player 0 in G′ such that it mimics the behavior of σ and additionally
ensures that the energy level of a play prefix never exceeds b by at most W . Formally, consider a play
prefix π′ in G′ starting in v. If π′ ends in some v′ ∈ V , then we define σ′(π) = (v′,σ(f(π))) where f
is the homomorphism from V ′ = V ∪ E to V induced by f(v) = v and f(e) = ε. On the other hand,
assume π′ ends in some e = (v′, v′′) ∈ E. If w(π′) ≤ b, then we define σ′(π′) = v′′, otherwise, we define
σ′(π′) = e, i.e., the self-loop is used until the energy level of the play prefix is exactly b. This completes
the definition of σ′.

Now, consider a play ρ′ in G′ that starts in v and is consistent with σ′. By definition of σ′, ρ′ visits
infinitely many vertices in V . Hence, by construction of A, ρ = f(ρ′) is a play in G that starts in v.
Further, ρ is consistent with σ, as σ′ mimics σ. Hence, f(ρ′) satisfies the parity condition. As the vertices
removed from ρ′ all have color one, and as all colors in Ω(V ) are greater than one, we conclude that ρ′

satisfies the parity condition as well.
To conclude, we show that every prefix π′ of ρ′ satisfies −c0 ≤ w′(π′) ≤ b+W . This implies that σ′

is indeed a corridor-winning strategy from v. The upper bound b+W is satisfied by construction of σ′:
As soon as the weight exceeds b, it is decreased to b by the strategy. As this correction happens after
each transition, the bound b can be exceeded by at most W , the largest absolute weight of an edge.

To conclude, we consider two cases: first, assume ρ′ has no prefix whose energy level exceeds b, then
we have w′(π′) = w(f(π)) ≥ −c0 for every prefix π′ of ρ′. Second, assume ρ′ has at least one prefix whose
weight exceeds b. We show that every longer prefix has non-negative weight, which concludes the proof.

Towards a contradiction, assume there is a longer suffix with negative weight. Then, there is an infix
of ρ′ of weight strictly smaller than −b, such that Player 0 never uses a self-loop in A′ to throw away
energy. Hence, f(ρ) also has an infix with weight strictly smaller than −b. This, however, contradicts
Lemma 3.

2 ⇒ 1: Let σ′ be a corridor-winning strategy for Player 0 in G′ from v. Further, let f be defined as
above.

We define a strategy σ for Player 0 from v in G that is obtained by simulating play prefixes in G′.
To this end, we again use a simulation function h that maps a play prefix v0 · · · vj in G that starts in v
and is consistent with σ to a play prefix h(v0 · · · vj) in G′ that starts in v, is consistent with σ′, and ends
in vj .

Hence, we define h(v) = v. Now, assume we have a play prefix v0 · · · vj in G that starts in v and
is consistent with σ. From our construction, we obtain a play prefix h(v0 · · · vj) in G′ that starts in v,
is consistent with σ′, and ends in vj . If vj ∈ V0 ⊆ V ′

0 , then let σ′(h(v0 · · · vj)) = (vj , vj+1). We define
σ(v0 · · · vj) = vj+1, which is a legal move due to the construction of A′. If vj ∈ V1, then let vj+1 be an
arbitrary successor of vj in A.

In both cases, we have to define h(v0 · · · vjvj+1). As σ′ is a corridor-winning strategy for Player 0
from v in G′, there is a unique play of the form h(v0 · · · vj)(vj , vj+1)

mvj+1 that is consistent with σ′. We
define h(v0 · · · vjvj+1) to be equal to this play, which satisfies the properties required above.

Let b the uniform bound on the amplitude of plays in G′ consistent with σ′ starting in v. Now, fix a
play ρ in G starting in v and consistent with σ. Furthermore, let ρ′ be the limit of the h(π) for increasing
prefixes of ρ. By construction, ρ′ starts in v as well and is consistent with σ′. Hence, ρ′ visits infinitely
many vertices from V and never gets stuck in a self-loop throwing away energy. This implies f(ρ′) = ρ.
Furthermore, as ρ′ satisfies the parity condition, ρ does as well: the colors removed by applying f are
inconsequential in this situation.

Let πj be the prefix of length j of ρ. A straightforward induction proves that the energy level of πj

is greater or equal to that of h(πj). As the latter is bounded from below by b, we conclude that σ is
winning for Player 0 in G from v with initial credit b. ⊓⊔

Now, we turn G′ into a bounded parity game with weights. In such a game, the cost-of-response of
every request has to be bounded, but the overall energy level of the play may still diverge to −∞. To rule
this out, we open one unanswerable request at the beginning of each play, which has to be unanswered
with finite cost in order to satisfy the bounded parity condition with weights. If this is the case, then the
energy level of the play is always in a bounded corridor, i.e., we obtain a corridor-winning strategy.
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Formally, for every vertex v ∈ V , we add a vertex v to A′ of an odd color c∗ that is larger than every
color in Ω(V ), i.e., the request can never be answered. Furthermore, v has a single outgoing edge to v
of weight 0, i.e., it is irrelevant whose turn it is. Call the resulting arena A′′, the resulting coloring Ω′′,
and the resulting weighting w′′, and let G′′ = (A′′,BndWeightParity(Ω′′, w′′)).

Lemma 12. Let G′ and G′′ be as above and let v ∈ V . The following are equivalent:

1. Player 0 has a corridor-winning strategy for G′ from v.
2. v ∈ W0(G′′).

Proof. 1 ⇒ 2: Let σ′ be a corridor-winning strategy for Player 0 in G′ from v. Further, let b be the
corresponding uniform bound on the amplitude of plays that start in v and are consistent with σ′. We
define a strategy σ′′ for Player 0 from v via σ′′(vπ) = σ′(π).

Let vρ be a play that is consistent with σ′′. By construction, ρ starts in v and is consistent with σ′.
Hence, it satisfies the parity condition and its amplitude is bounded by b. Thus, almost all requests in ρ
are answered with cost at most b and there is no unanswered request of infinite cost. This implies that
vρ satisfies the bounded parity condition with weights. Hence, v ∈ W0(G′′).

2 ⇒ 1: Let σ′′ and b be a winning strategy for Player 0 in G′′ from v and a bound such that every
request in a play starting in v and consistent with σ′′ is answered or unanswered with cost at most b.
Due to Corollary 1, such a strategy σ′′ exists. We define a strategy σ′ for Player 0 from v in G′ via
σ′(π) = σ′′(vπ).

Let ρ be a play starting in v that is consistent with σ′. By construction, vρ is consistent with σ′′.
Hence, vρ satisfies the parity condition and every request is answered or unanswered with cost at most b.
In particular, this holds true for the unanswered request posed by visiting v. Hence, the amplitude of vρ
(and thus also that of ρ) is bounded by b.

Thus, ρ satisfies the parity condition and the energy level of all its prefixes is between −b and b. As ρ
is picked arbitrarily, we have that σ′ is corridor-winning from v. ⊓⊔

8.2 From Bounded Parity Games with Weights to Parity Games with Weights

Next, we show how to turn a bounded parity game with weights into a parity game with weights so that
solving the latter also solves the former. The construction here uses the same restarting mechanism that
underlies the proof of Lemma 1: as soon as a request has incurred a cost of b, restart the play and enforce
a request of cost b+1, and so on. Unlike the proof of Lemma 1, where Player 1 could restart the play at
any vertex, here we always have to return to a fixed initial vertex we are interested in. While resetting,
we have to answer all requests in order to prevent Player 1 to use the reset to prevent requests from
being answered. Assume v∗ ∈ V is the initial vertex we are interested in. Then, we subdivide every edge
in A′′ to allow Player 1 to restart the play by answering all open requests and then moving back to v∗.

Formally, fix a bounded parity game with weights G = (A,BndWeightParity(Ω, w)) with A =
(V, V0, V1, E) and a vertex v∗ ∈ V . We define the parity game with weights Gv∗ = (Av∗ ,WeightParity(Ωv∗ , wv∗))
with Av∗ = (V ′, V ′

0 , V
′
1 , E

′) where

– V ′ = V ∪ E ∪ {⊤}, V ′
0 = V0, and V ′

1 = V1 ∪ E ∪ {⊤},
– E′ = {(v, e), (e,⊤), (e, v′) | e = (v, v′) ∈ E} ∪ {(⊤, v∗)},
– Ωv∗(v) = Ω(v), Ωv∗(e) = 0 for every e ∈ E, and Ωv∗(⊤) = 2max(Ω(V )), and
– wv∗(v, e) = w(e) for (v, e) ∈ V × E and wv∗(e) = 0 for every other edge e ∈ E′.

Lemma 13. Let G and Gv∗ as above. The following are equivalent:

1. v∗ ∈ W0(G).
2. v∗ ∈ W0(Gv∗).

Proof. 1 ⇒ 2: Let σ be a winning strategy for Player 0 for G from v∗. Due to Corollary 1 we can assume
that there is a b, such that every request in a play that starts in v∗ and is consistent with σ is answered
or unanswered with cost at most b.

We define a strategy for Player 0 in Gv∗ . Given a play prefix π′ in Av∗ let sfx⊤(π
′) be the longest

suffix of π′ that does not contain the vertex ⊤. Hence, if π′ starts in v∗, then sfx⊤(π
′) starts in v∗ as

well, as v∗ is the only successor of ⊤. Further, let f be the homomorphism from V ∪ E to V induced
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by f(v) = v for v ∈ V and f(e) = ε for e ∈ E. Note that, if π′ is a play (prefix) in Av∗ that does
not visit ⊤, then f(π′) is a play prefix in A of the same weight and with the same sequence of colors
(save for the occurrences of color zero at the deleted vertices, which is inconsequential for our condition
considered here, since it is the smallest color).

Now, let π′ be a play prefix in Av∗ that ends in a vertex of Player 0, say in v ∈ V ′
0 = V0. Then, we

define σ′(π′) = (v,σ(f(sfx⊤(π
′)))). It remains to prove that σ′ is winning for Player 0 in Gv∗ from v∗. To

this end, let ρ′ be a play in Av∗ starting in v∗ and consistent with σ′. We consider two cases, depending
on how often the vertex ⊤ is visited by ρ′.

If ⊤ is visited only finitely often, then let ρ be the suffix of ρ′ starting after the last occurrence of ⊤.
By construction of σ′, f(ρ) is a play in A starting in v∗ and consistent with σ. Hence, it satisfies the
bounded parity condition with weights. Hence, due to BndWeightParity(Ω, w) ⊆ WeightParity(Ω, w),
and since the bounded parity condition with weights is 0-extendable, we conclude that f(ρ′) satisfies the
parity condition with weights as well. Finally, by construction of Av∗ , ρ′ satisfies the parity condition
with weights, too.

Now, assume ⊤ is visited infinitely often. Then, we can decompose ρ′ into π′
0⊤π′

1⊤π′
2⊤ · · · , so that

each π′
j does not visit ⊤. Hence, by definition of σ′, each of the f(π′

j) starts in v∗ and is consistent with
σ. Furthermore, every request in some π′

j is answered by the next visit to ⊤. Thus, it suffices to show
that the cost-of-response of all requests in ρ′ is bounded. This follows immediately from the fact that σ
allows answered or unanswered requests of cost at most b in f(π′

j). This property is inherited by the π′
j

by construction of Av∗ .
So, in both cases ρ′ ∈ WeightParity(Ω, w), i.e., σ′ has the desired properties.
2 ⇒ 1: We proceed by contraposition. Due to the determinacy of both games, it suffices to show that

v∗ ∈ W1(G) implies v∗ ∈ W1(Gv∗). Hence, let τ be a winning strategy for Player 1 in G from v. Further,
let sfx⊤ and f be defined as above.

Now, we define a strategy τ ′ for Player 1 from v∗ in Gv∗ that is controlled by a counter κ, which
is initialized with zero, and which is incremented during a play every time the costs of some request
exceed κ. We construct our strategy such that each time κ is updated, Player 1 restarts the play by
moving to ⊤ and then to v∗.

Assume we have a play prefix π′ in Av∗ that ends in a vertex of Player 1 and have to define τ ′(π′).
We consider several cases depending on the last vertex of π′. If π′ ends in ⊤, then we define τ ′(π′) = v∗,
which is the only successor of ⊤.

If π′ ends in v ∈ V1 ⊆ V ′
1 , then we define τ ′(π′) = (v, τ(f(sfx⊤(π

′)))), i.e., we discard everything up to
and including the last occurrence of ⊤. Finally, if π′ ends in e = (v, v′) ∈ E ⊆ V ′

1 , then we consider two
cases. Let κ be the current counter value. If sfx⊤(π

′) contains a request such that the remaining part of
π′ that starts at this request has amplitude greater than κ, then we define τ ′(π′) = ⊤ and increment κ.
Otherwise, we define τ ′(π′) = v′ and leave κ unchanged.

It remains to show that τ ′ is winning in Gv∗ from v∗. To this end, let ρ′ be a play in Gv∗ that starts
in v∗ and is consistent with τ ′. If ρ′ visits ⊤ infinitely often, then ρ′ contains, for every b ∈ N, a (different)
request that is answered or unanswered with cost at least b. Hence, ρ′ violates the parity condition with
costs.

Finally, if ρ′ visits ⊤ only finitely often, then there is a b ∈ N (the final value of κ, which is only
finitely often incremented in this case) such that every request in ρ′ is answered or unanswered with
cost at most b. Furthermore, let ρ be the suffix of ρ′ that starts after the last occurrence of ⊤. As in the
previous case, f(ρ) is a play in A that starts in v∗ and is consistent with τ . As ρ and f(ρ) have essentially
the same evolution of the weights (save for the removed edges of weight zero) and the same color sequence
(save for the removed vertices of color zero), every request in f(ρ) is answered or unanswered with cost
at most b. However, as ρ is consistent with τ , it violates the bounded parity condition with weights. This
is, in this situation, only possible by violating the parity condition. Hence ρ, and thus also ρ′, violates
the parity condition as well. Therefore, ρ′ in particular violates the parity condition with weights.

In both cases, ρ′ is winning for Player 1, i.e., τ ′ has the desired properties. ⊓⊔

9 Conclusions and Future Work

We have established that parity games with weights and bounded parity games fall into the same com-
plexity class as energy parity games. This is interesting, because, while the complexity of solving such
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games have the signature complexity class NP ∩ co-NP, they are not yet considered a class in their
own right. It is also interesting because the properties appear to be inherently different: While they
both combine the qualitative parity condition with quantified costs, parity games with weights combine
these aspects on the property level, whereas energy parity games simply look at the combined—and
totally unrelated—properties. We show the characteristic properties of parity games and of games with
combinations of a parity condition with quantitative conditions relevant for this work in Table 1.

Complexity
Memory

Bounds
Player 0 Player 1

Parity Games [3] quasi-polynomial pos. pos. –
Energy Parity Games [4] NP ∩ co-NP O(ndW ) pos. O(nW )

Finitary Parity Games [7] polynomial pos. inf. O(nW )
Parity Games with Costs [13] NP ∩ co-NP pos. inf. O(nW )
Parity Games with Weights NP ∩ co-NP O(nd2W ) inf. O((ndW )2)

Table 1. Characteristic properties of variants of parity games.

As future work, we are looking into the natural extensions of parity games with weights to Streett
games with weights [7, 13], and at the complexity of determining optimal bounds and strategies that
obtain them [28]. We are also looking at variations of the problem. The two natural variations are

– to use a one-sided definition (instead of the absolute value) for the amplitude of a play, i.e., using
Ampl(π) = supj<|π| w(v0 · · · vj) ∈ N∞ (instead of Ampl(π) = supj<|π| |w(v0 · · · vj)| ∈ N∞), and

– to use an arbitrary consecutive subsequence of a play, i.e., Ampl(π) = supj≤k<|π| |w(vj · · · vk)| ∈ N∞.

There are good arguments in favor and against using these individual variations—and their combination
to Ampl(π) = supj≤k<|π| w(vj · · · vk) ∈ N∞—but we feel that the introduction of parity games with
weights benefit from choosing one of the four combinations as the parity games with weights.

We expect the complexity to rise when changing from maximizing over the absolute value to maxi-
mizing over the value, as this appears to be close to pushdown boundedness games [5], and we conjecture
this problem to be PSPACE complete.
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